J. Ethnobiol. 8|1|:81-129

A SURVEY OF TRADITIONAL METHODS EMPLOYED FOR THE DETOXIFICATION OF PLANT FOODS

TIMOTHY JOHNS School of Dietetics and Human Nutrition Macdonald College of McGill University Ste. Anne de Bellevue Quebec H9X1C0, Canada

and

ISAO KUBO Entomology and Parasitology College of Natural Resources University of California Berkeley, CA 94720, USA

ABSTRACT.—From a survey of ethnobotanical reports a list of 216 species of lichens, fungi, algae and vascular food plants that are detoxified during processing was complied. Major techniques of detoxification are categorized as heating, dissolution, fermentation, adsorption, drying, physical processing and pH change, and a classification scheme that contains details of the specific ways these techniques are employed is presented. An ancillary survey of chemical data indicates that detoxification is used to remove a range of potential toxins. The Cycadales, the families Araceae, Dioscoreaceae, and Fabaceae, plus *Quercus* spp. and *Manihot esculenta* stand out as taxa that are detoxified by people worldwide. Dense carbohydrates available in these plants may have motivated humans to develop detoxification techniques. Although their antiquity is unknown, these techniques may have played a role in the evolution of human dietary patterns.

INTRODUCTION

Although human food procurement is constrained by the same allelochemicals (secondary compounds) that make many plants unavailable as food for herbivorous animals, processing technology is one means employed by humans for making foods more palatable and less toxic. Selection for genetic changes during domestication risks exposing plants to attack by insects and plant diseases. By eliminating undesirable compounds subsequent to maturation of the plant we allow chemicals to play their natural role in defense during vegetative and developmental stages, thus ensuring a harvest for ourselves. Technological innovations, then, allow humans to circumvent the coevolutionary competition that characterizes plant-herbivore interactions (Harborne 1982).

The extent to which plant resources were eaten by early humans and our hominid predecessors is a concern that is relevant for understanding the evolution of the human dietary patterns (Milton 1987; Stahl 1984). Processing techniques for detoxifying wild and cultivated foods may have played an important role in early human food procurement by making plant foods more available. Cultural methods for dealing with toxins augmented the biological detoxication capabilities we share with other animals. Plants were probably always eaten by hominids but processing contributed to improving their dietary quality.

While the use of fire dates back to at least 500,000 years B.P. (Clark and Harris 1985; Isaac 1984), evidence from which to determine the antiquity of other traditional processing techniques is less available. The use of these techniques predates the origins of agriculture, indeed detoxification methods were probably important in allowing humans to interact with certain plant foods to the extent that they could begin a selection process leading to domestication. Study of processing techniques employed in historical times by agriculturalists and gather-hunter peoples, the mechanisms by which they function and their incidence patterns, may provide insights into the possible ways by which they developed. Modern industrial food processes have a partial function in detoxifying foods; these techniques have their roots in practices of the past.

Traditional detoxification techniques are essential to the subsistence of many people around the world, and their importance in specific instances both historically and in the present day has been noted repeatedly. The methods used globally to detoxify bitter cassava (*Manihot esculenta* Crantz.) have been the most extensively studied (Lancaster *et al.* 1982). Fewer authors have addressed detoxification as a general phenomenon (cf. Harris 1977; Hayden 1981). Through a compilation of individual cases, this study attempts to contribute to the understanding of the overall significance of this human activity.

While processing techniques have apparent value, little attention has been given to their efficacy (cf. Christiansen and Thompson 1977; Lancaster *et al.* 1982). Residual amounts of toxins may be present even when acute toxicity is eliminated, and their effectiveness may be relative. Cyanide poisoning, for example, continues to be a problem in many parts of the world in spite of cassava processing (Cock 1982).

Processing may eliminate nutrients along with toxins and requires greater evaluation from this perspective. In addition to cultural methods, humans have physiological ways for avoiding plant toxicity, but little is known about the relationship between the two. Microsomal enzyme activities may depend on nutritional status (Anderson *et al.* 1986). Where humans subsist on diets of limited diversity such as those dominated by cassava, greater evaluation of the risks and benefits of processed toxic foods are needed.

SURVEY OF TRADITIONAL PLANT DETOXIFICATION METHODS

Ethnobotanical reports from around the world were surveyed. One hundred and thirty-seven genera and 216 species from 65 families of lichens, fungi, algae and vascular plants that are used after some detoxification are listed in Table 1. While this survey is comprehensive it is not exhaustive. Although similar processing techniques are used in various other circumstances, this survey lists only those cases where it was explicitly stated that the plants were being detoxified or bitterness was being eliminated. Although the elimination of toxic and bitter constituents is the focus of this discussion, it must be recognized that processing techniques improve foods by making them more digestible or more palatable in several ways (Stahl 1988). For example cooking, soaking, grating and the addition of lye are used widely to soften foods. Increasing the digestibility of foods makes nutrients more available.

Table 1 includes known toxic chemicals reported from the plants of interest. It should be noted that any particular plant may contain a number of potentially toxic allelochemicals, and until more detailed chemical data are available the listed chemicals may only provide an approximation of what compounds are the subject of detoxification efforts.

Of the taxa in Table 1 certain ones are conspicuous. The Cycadales, the families Araceae, Dioscoreaceae, and Fabaceae, plus *Quercus* spp. (Fagaceae) and *Manihot esculenta* (Euphorbiaceae), are notable in their exploitation around the world and this because of the role detoxification has played.

Processing techniques eliminate a large range of allelochemicals representing a cross-section of the classes of chemicals found in plants. No pattern is apparent in these particular chemicals. Just the important taxa listed above include calcium oxalate, alkaloids, MAM (methylazoxymethanol) glycosides, cyanogenic glycosides, saponins, tannins, lectins and non-protein amino acids.

Why do humans bother to process certain plant foods and not others? People who utilize toxic plants exploit other plants which require little or no processing. Perhaps the answer lies in the fact that the major processed plants are all of widespread distribution and produce a reliable, recognizable and abundant food resource. The aroids, cycads, yams, acoms, and cassava are all important carbohydrate-supplying staples for various cultural groups. The legumes represent another source of abundant food. However, none of the major exploited legumes (e.g. beans, peas, and lentils), except edible lupines, require detoxification (other than cooking).

CLASSIFICATION OF TRADITIONAL PLANT DETOXIFICATION METHODS

Processing methods show marked similarities worldwide and are classifiable according to the way in which they function to eliminate toxins. Coursey's [1973] classification of cassava processing served as a basis for the more elaborate scheme presented in APPENDIX 1. Plants considered in Table 1 were classified according to this new scheme. The classification codes provide a convenient way to analyze individual cases of detoxification.

Heat, solution, fermentation, adsorption, drying, comminution, and chemical reaction due to pH change comprise the major means of detoxification. Many detoxification procedures involve more than one of these functions, and it is a matter of judgement as to the most important part of the process. The classification is hierarchical and designed so that the more important a part of the process is in the overall detoxification the higher is its decimal point. For example boiling of a food may involve both detoxification by heating and detoxification by solution. Either of the codes 1.12 or 2.27 is chosen over the other in specific cases where one function is considered the more crucial. The classification might be further complicated if, for example, the material is ground before it is boiled and/or if lye, acid, or clay is added to the water.

METHODS OF PLANT FOOD DETOXIFICATION

1. Detoxification by heating.—Heat provides energy to drive chemical reactions within foods and those between chemical constituents of a food and environmental chemicals such as oxygen. Toxins may be converted or degraded to less poisonous chemicals. Heat

Reference Plant Group Chemistry Family Scientific Name Location Processing Classification Code Plant Part (1 2 3 4 5 6 7 Lichens Bryoria fremontii (Tuck.) vulpinic acid х Brodo & D. Hawksw. (\mathbf{P}) British Х X 2.1216 Turner 1977 Columbia Cetraria islandica (L.) Ach. Japan; N. Х Х 2.2812Tanaka 1976 (\mathbf{P}) temperate Fungi Gvromitra esculenta Pers. ex Fr. gyromitrin Garnier et al. 1978 Х 2.121Tanaka 1976 (Fb) Europe Morchella esculenta Pers. ex. Fr. Temperate Х 2.121Tanaka 1976 (Fb)region Algae Asparogopsis sanfordiana Harv. halogenated hydrocarbons Moore 1977 Х Х 2.212Tanaka 1976 (\mathbf{T}) VASCULAR PLANTS

TABLE 1. Survey of Traditional Methods of Plant Detoxification. Each report is categorized for the seven basic techniques outlined in the text and coded according to the schema in APPENDIX 1.

Aizoaceae

Vol. 8, No. 1

Plant Group		Chemistry	Reference
Family Scientific Name Plant Part ()	Location	Processing Classification 1 2 3 4 5 6 7 Code	
Glinus oppositifolius A.DC. (P)	Philippines	saponins X 2,11	Hegnauer 1964 Burkill 1985
Sesuvium portulacastrum L. (P)	W. Africa	salt X X 2.2812	Burkill 1985 Burkill 1985
Tetragona tetragonioides (P)	(Pallas) O.Ktze W. Africa	X 2.12	Burkill 1985
Alismaceae			
Alisma plantago L.		sesquitemenoids,	Oshima 1983
(R)	Eurasia	triterpenoids, choline X 2.51	Hedrick 1919
Sagittaria cuneata Sheld. (T)	W. North America	X 2.12	Johnston 1970
Sagittaria latifolia Willd. (T)	E. North America	X 2.12	Hussey 1974
Amaranthaceae			
Achyranthes japonica Nakai (L)	Asia	X X 2.2812	Tanaka 1976

Plant Group Family			Che	mistr	Ý						Reference
Scientific Name		Location	Proc	cessinį	z Clas	sifica	tion				
Plant Part ()			1	2	3	4	5	6	7	Code	
Amaryllidaceae											
Lycoris radiata Herb.			alka	loids							Wildman 1968
-	(B)	Japan		X						2.221	Tanaka 1976
L. sanguinea Maxima.											
0	(B)	Japan		Х						2.221	Tanaka 1976
L. squamigera Maxima.			alka	loids							Wildman 1968
	(B)	Japan		Х						2.221	Tanaka 1976
Anacardiaceae										97. 49. 49. 49. 49. 49. 49. 49. 49. 49. 49	
Corynocarpus laevigata			nitr	opropa	moyl	gluco	pyran	oses			Moyer 1979
Forst.	(SF)	New Zealand	х	X	·					2.251,	
										2.214,	
										2.2111	Hedrick 1919; Wright-St. Clair 1972
Semecarpus anacardium	L.		pent	tadecy	lcated	chols					Hembree et al. 1978
·	(F)	Asia, Australia	x	,			х			2.13, 2.51	Hedrick 1919
S. austaliensis Engl.											
U U	(F }	Australia	Х							2.131	Cribb & Cribb 1975; Irvine 1957

<u> </u>

86

. . . .

Plant Group				Reference							
Family Scientific Name		Location	Рю	cessin	g Clas	ssifica	tion				
Plant Part ()		a	1	2	3	4	5	6	7	Code	
Annonaceae											
Mezzettia leptopoda (Hoo	ok. f.										
& Thoms.) King	(T)	Malay Penninsula	X	x	##4-1	X	X	******	d. 2. 41.41100000	2.31114	Skeat & Blagden 1906
Apiaceae											
Cymopterus fendleri A. C	Gray		fure	ocoun	arins						Yost et al. 1977;
	(L)	W. North America	X							2.131	Hegnauer 1973 Steggerda ક્ષ Edkardt 1941
Lomatium orientale Cou	lter										
&Rose	(R)	Arizona	х							2.131	Steggerda & Eckardt 1941
Cogswellia orientalis)											Eckalut 1941
Apocynaceae											
Apocynum spp.			care	fiac gl	ycosi	des					Hegnauer 1964
Apocynum angustifolium	ŧ										
Wooton	(La)	New Mexico			Х					2.4115	Castetter 1935

Plant Group			Che	mistr	у						Reference
Family Scientific Name Plant Part ()	NIT 41 4 - 11 - 1	Location	Pro 1	cessin 2	g Cla 3	ssifica 4	ition 5	6	7	Code	
Araceae											
Alocasia maerorhiza Scl (Colocasia maerorhiza)	hott.					cosid ibitor					Nahrstedt 1975 Sumathi & Patta- biraman 1977
	(St)	Australia	х	х				x		2.132,	Cribb & Cribb
	(\mathbf{T})	Philippines	X							2.212 2.121, 2.131	1975; Irvine 1957 Brown 1920
	(T)	New Caledonia	Х							2.13	Tanaka 1976
Amorphophallus abyssi N.E.Br.	nicus (T)	S. Africa	x	x						2.2711	Scudder 1971
A. aphyllus (Hook.) Hu	tch. (T)	W. Africa	х	х			x		x	2.235, 2.1125, 2.235	Burkill 1985; Busson 1965
A. campanulatus (Roxb.											
Blume.	(T)	India	Х	Х						2.2211	Singh & Arora 1965
	{T}	Asia, Philippines	Х							2.121, 2.13	Hedrick 1919; Brown 1920
A. dracontioides N.E. B	r. (T)	W. Africa	sapı X	onins X				x		2.22222	Burkill 1985 Burkill 1985

88

Plant Group			Che	mistr	у						Reference
Family Scientific Name Plant Part ()		Location	Proc 1	cessin 2	g Cla: 3	ssifica 4	tion 5	6	7	Code	
A. glabra F.M. Bailey	(TFSt)	Australia	X							2.13	Cribb & Cribb 1975
A. lyratus Kunth	(T)	India	X							2.121	Tanaka 1976
Anchomanes difformis (Bl.) Engl.	(Rh)	W. Africa	x	x	x				x	2.31134	Burkill 1985
A. welwitschii Rendle	(T)	W. Africa	х	х						2.2211	Burkill 1985
Arisaema amurense Maxim	(R)	Asia	x	х				x		2.2111	Tanaka 1976
A. curvatum Kunth.	(T)	India	х	х	Х					2.31112	Hedrick 1919
A. triphyllum (L.) Torr. (Arum triphyllum)	(T)	E.N. America	х				X	x		2.11, 2.5122, 2.132	Kuhm 1961; Harris 1890; Havard 1895
Arisarum vulgare Targ.	(R)	North Africa		х						2.22	Hedrick 1919
Arum maculatum L.	(R) (L)	Еигоре Еигоре	cyai X X	nogen	ic gly	coside	es X			2.11 2.28115	Nahrstedt 1975 Hedrick 1919 Hedrick 1919

and the second second

Same and the second states and

Plant Group			Ch	emisti	.y						Reference
Family Scientific Name Plant Part ()		Location	Рго 1	cessir 2	g Cla 3	ssifica 4	ition 5	6	7	Code	
Calla palustris L.	(R)	Europe; N. Asia; North America	х				X	X		2.112	Hedrick 1919
Colocasia antiquorum S	chott										
	(L)	Australia	х	Х						2.2812	lrvine 1957
C. esculenta (L.) Schott	(T) (T,St) (T)	W. Africa Pacific Australia	X X	x				X		2.224 2.61 2.12, 2.13	Burkill 1985 Bascom 1965 Cribb & Cribb 1975
C. indica Hassk.	(T)	S. Asia	х							2.11	Hedrick 1919
<i>Lysichiton americanum</i> Hulten & St. John	(R)	W.N. America	X							2.121	Gunther 1973
Peltandra virginica Rafit	1.										
(Arum virginica)	(T)	E.N. America	Х				Х	X		2.514, 2.131, 2.12	Harris 1890; Hedrick 1919
Plesmonium margaritife	rum										
Schott	(T)	India	х	Х					X	2.28114	Tanaka 1976
Stilochiton lancifolia Kotschy & Реут.	(L) (Rh)	W. Africa W. Africa	x	X X					x	2.28112 2.2611	Burkill 1985 Burkill 1985

والمراجع ورجانا المراجع والمراجع والمراجع

Plant Group			Cbe	mistr	У		Reference				
Family Scientific Name		Location	Pro	cessin	g Cla	ssifica	tion				
Plant Part ()			1		3	4	5	6	7	Code	4
Symplocarpus foetidus											
Nutt.	(R)	E.N. America					Х	Х		2.131	Harris 1890
Typhonium angustilobiu	2223										
F.V. Muell.	{T}	Australia	Х					Х		2.132	Cribb & Cribb 1975
T. brownii Schott.	(T)	Australia	Х					X		2.132	Cribb & Cribb 1975, Irvine 1957
T. trilobatum (L.) Schott	(Rh)	West Africa	х				х			2.11, 2.5	Burkill 1985
Areacaceae		<u></u>	<u></u>		·····			·			
Ancistrophyllum secund florum (G. Mann &											
H. Wendl.)	(St,L)	W. Africa	Х							2.12	Irvine 1952
Asclepiaceae		<u>, 1977 - Allina Allin, C., 2000, C., 2000, Allin, A., 2000</u>								······································	
Ceropegia bulbosa Rosb.			care	liac g	lycosi	des					Hegnauer 1963
-	(R)	West Indes	Х							2.121	Tanaka 1976
Asteraceae		±			·····			A	·····	<u></u>	n <mark>n marga an an</mark>
Agoseris retrorsa Greene	(P)	W.N. Africa	x	х						2.2144	Zigmond 1981
Artemisia laciniata Will	d.	Manchuria	ter <u>ı</u> X	enoid	s, pol	yacety	ylenes	i		2.121	Greger 1977 Tanaka 1976

Plant Group			Che	mistr	ÿ						Reference
Family Scientific Name Plant Part ()		Location	Pro 1	cessin; 2	g Clas 3	Code					
Aster ageratoides Turcz.	(L)	Asia	x							2.12	Tanaka 1976
Balsamorrhiza spp.	(R)	W.N. America						х		2.61	Havard 1895
Hemizonia luzulaefolia l	DC (S)	California	x							2.131	Tanaka 1976
Scorzonera hispanica L.	(R)	C, & S. Europe	X	x						2.2112	Hedrick 1919
Vernonia amygalina Del.	(L)	W. Africa	eler X	nanoli X	de la	ctones	X	X		2.2811, 2.222, 2.121	Ganjian et al. 1983 Burkill 1985; Keshinro & Ketiku 1979; Busson 1965
<i>V. colorata</i> (Willd.) Drak	e (L)	W. Africa	eler X	nanoli X	de la	ctones	i			2.2811, 2.22	Gasquet et al. 1985 Burkill 1985
V. thomsoniana Oliv. & Hiern.	(L)	Gabon	x	x						2.2812	Burkill 1985
Brassicaceae											
Arabis glabra Bernh.	(L)	Asia	gluo X	cosino X	lates					2.2812	Hegnauer 1964 Tanaka 1976
Dentaria spp.		America	gluo	osino	lates						Hegnauer 1964

Plant Group Family			Che	emistr	У						Reference
Scientific Name Plant Part ()		Location	Pro 1	cessin 2	g Clai 3	sifica 4	tion 5	6	7	Code	
Dentaria maxima Nutt.	(R)	North America	х		х					2.31113	Tanaka, 1976
Isatis tinctoria L.	(L)	China		Х						2.21 1	Tanaka 1976
Senebieta coronopus Poi	ir. (P)	cosmopolitan	X							2.121	Hedrick 1919
<i>Stanleya pinnata</i> (Pursh) Britton	(L,St)	California	х	x				x		2.2144	Zigmond 1981
Capparaceae				<u></u>	<u> </u>					an	
<i>Boscia senegalensis</i> (Per Lam.	s.) (S)	W. Africa	glu	cosinc X	lates,	alkal	oids			2.211	Ahmed et al. 1972 Delaveau et al. 1973; Burkill 1985
Capparis retusa Griesb.	(F)	Chaco, South America	X							2.2812	Métraux 1950
C. salicifolia Griesb.	(F)	Chaco, South America	glua X	cosino	lates					2.2812	Ahmed et al. 1972 Métraux 1950
C. speciosa Griseb.	(S)	Chaco, South America	х	х				х		2.221222	Métraux 1950

×++,>,28

Plant Group			Chemistry	Reference	
Family Scientific Name Plant Part ()		Location	Processing Classification 1 2 3 4 5 6 7 Code	le	
Cleome gynandra L. (Gynandropsis gynand	r <i>a)</i> (L)	Tanzania	glucosinolates X X 2.22, 2.11	Hasapis et al. 1981; Ahmed et al. 1972 Burkill 1985	
C. serrulata Pursh.	(L)	Arizona	X X 2.2812	Steggerda & Eckardt 1941	
Courbonia edulis Gilg Benedict	. & (F)	E. Africa	alkaloids X 2.2812	Delaveau et al. 1973, Watt & Breyer- Brandwijk 1962	
Maerua glauca Chiov.		S. Africa	alkaloids X X X 2.28123	Taylor & Henry 1973; Scudder 1971	
Thylachium africanum	a Lour.			Ahmed et al. 1972;	
	(T)	E. Africa	glucosinolates, alkaloids X 2.12	Delaveau et al. 1973; Weiss 1979	
Celastraceae		na an an tao ao aminina an aminina ao aminina	₩ <u>₩₩₩₩₩</u> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	<u>, , , , , , , , , , , , , , , , , , , </u>	
Celastrus scandens L.	(B)	United States	X 2.121	Tanaka 1976	

Plant Group Family			Che	mistr	y		Reference				
Scientific Name Plant Part ()		Location	Proo 1	cessin 2	g Clas 3	sifica 4	tion 5	6	7	Code	
Euonymus sieboldianus l	Blume		585(quiter	venest	er alk	aloide				Bruning & Wagner 1978;
	(L)	W. Asia	X	441601	, ciico.	or un		,		2.121	Tanaka 1976
Chenopodiaceae											
Chenopodium pallidicau Aellen.	le (S)	Peru		x						2.211	Gade 1970
C. quinoa Willd.	(S)	Andes, South America	sap	onins						2.221	Hegnauer 1964 Sauer 1950; Kroeber 1950
Cucurbitaceae											
<i>Citrullus colocynthis</i> (L. Schrad) (S) (F)	W. Africa S. Africa	cuc X X	urbita X X	cins		x		x	2.212, 2.15 2.2812	Hegnauer 1963 Burkill 1985 Hedrick 1919
Hodgsonia capniocarpa F	Ridl. (S)	Malaysia	x							2.131	Tanaka 1976
Momordica balsamina L	. (S) (F)	Australia China	х	x x				x		2.2511 2.2111	Burkill 1985 Hedrick 1919
M. charantia L.	(F) (F)	India, S.E. Asia India		X X			х			2.2111 2.2511	Burkill 1985 Hedrick 1919

Plant Group Family			Che	emisti	r y						Reference
Scientific Name Plant Part ()		Location	Р <i>г</i> о 1	cessir 2	ıg Cla 3	ssifica 4	ition 5	6	7	Code	
			**	-						······	
Cupressaceae											
Thuja orientalis L.	(S)	W. Asia								2.	Tanaka 1976
Cycadaceae											
Cycas sp.					ethyla	zoxyn	nethai		lycoside		de Luca et al. 1980;
	(S)	Australia	Х	X				X		2.211, 2.214	Warner 1958
C. circinalis L.	(S)	Guam	х	x			X	X		2.2221	Brown 1920
C. media R. Br.	(S)	Australia	x	х	х		х	X		2.2127, 2.233, 2.132	Cribb & Cribb 1975; Tanaka 1976
	(F)	Australia	х	Х	Х		х	х		2.2127	Irvine 1957
C. revoluta Thunb.	(St)	Trop. Asia	х					х		2.132, 2.64	Tanaka 1976
C. <i>rumphii</i> Miq.	(S) (St,S)	Bay of Bengal Oceania	X X	x				X		2.121 2.2112	Bhargava 1983 Barrau & Peeters 1972
C. thuarsii Guad	(St)	E. Africa		x	X		Х	х		2.31212	Weiss 1979

.

Plant Group			Chemistry						Reference
Family Scientific Name Plant Part ()		Location	Processing Cl 1 2 3		on 5	6	7	Code	
Dioscoreaceae	<u></u>			<u></u>					annaise — Annaiste Annaiste — Annaiste Annaiste — Annaiste — Annaiste — Annaiste — Annaiste — Annaiste — Annais
Dioscorea spp.	(T)	E. Africa	saponins, alk X		X	x		2.28222, 2.31211	Takeda 1972; Karnick 1971; Weiss 1979
D. alata L.	(T)	Africa	saponins X			x			Karnick 1971 Burkill 1985
D. bulbifera L.			saponins, alk	aloid: dís	ecor	ine			Takeda 1972; Willaman & Li 1970;
	(T)	Pacific	X X			X		2.2812, 2.231, 2.243	Lessa 1977; Barrau & Peeters 1972; Bascom 1965
D. cochleari-apiculata De Wild	(T)	Africa	х					2.2	Burkill 1985
D. dumetorum Pax.			alkaloids, phe	enanthren	ies				Willaman & Li 1970; El-Olemy & Reisch 1979
	(T)	Africa	Х	X		X	Х	2.211, 2.213, 2.22, 2.43, 2.25	Coursey 1967

Summer 1988

Plant Group Family				Reference								
Scientific Name		Location				ssifica						
Plant Part ()			1	2	3	4	5	6	7	Code		
	(T)	Africa	Х	X		Х		X	x	2.222, 2.231, 2.261, 2.63, 2.431, 2.432	Corkill 1948	
	(T)	Africa		х					х	2.271	Watt & Breyer- Brandwijk 1962	
D. glabra Roxb.	(T)	Bay of Bengal	sap X	onins	, alkal	loids				2.121	Kamick 1971 Bhargava 1983	
D. hispída Dennst. (D. daemona)			sap	onins	, alkal	loids					Kamick 1971; Willaman & Li 1970	
	(T)	Malay Penninsula	X					х	х	2.1323	Skeat & Blagden 1906	
	(T) (T)	Cambodia Philippines		X X			Х	X X		2.2326 2.232	Martin 1971 Brown 1920	
D. latifolia Benth.	(T)	West Africa	X	X						2.2211, 2.2112	Labouret 1937; Busson 1965	
D. praehensilis Benth.	(T)	C. Africa	х	X						2.2812	Burkill 1939	
D. prainiana R. Kunth	(T)	Malaysia	X							2.111	Tanaka 1976	

44.m.n

Plant Group Family			Che	emistr	у						Reference
Scientific Name Plant Part ()		Location	Pro 1	cessin 2	g Clas 3	ssifica 4	tion 5	6	7	Code	
D. preussii Pax.	(T)	W. Africa		х				х		2.232, 2.221	Busson 1965; Tanaka 1976
D. sansibarensis Pax.	(T)	Africa	alka X	aloids X				x		2.213 2.253, 2.233	Willaman & Li 1970; Burkill 1939
Tamus communis L.	(St)	Europe; Persia; N. Africa	sapo X	onins, X	phena	anthre	enes			2.2712	Takeda 1972; El-Olemy & Reisch 1979; Hedrick 1919
Ebenaceae											
Diospyros spp.			nap	hthaq	uinon	es					Hegnauer 1966
D. oleifera Cheng	(F)	China					******			2.	Tanaka 1976
Elaeocarpaceae											
Elaeocatpus sp.			ind	olizidi	ine all	kaloid	s				Johns & Lamberton 1973
E. dentatus Vahl.	(F)	New Zealand	Х				х			2.5111	Wright-St. Clair 1972

- C Strand Charles

Summer 1988

Plant Group Family		Reference									
Scientific Name Plant Part ()		Location	Proe 1	cessin 2	g Cla: 3	ssifica 4	tion 5	6	7	Code	
Euphorbiaceae	- J1. 2						±	<u></u>		an di tan di kan di anta di di tanggaya an a	
Elateriospermum tapos	Blume. (S)	Malaysia, Indonesia	x							2.121, 2.131	Tanaka 1976
Euphorbia lathyrus L.	(S)	S. Europe	iger X	nane-t	ype di	iterpei	ne est	ers	x	2.251	Hecker 1977 Hedrick 1919
Hevea brasiliensis Mue	llArg. (S)	S.E. Asia	суа	nogen	ic gly X	coside	-			2.311	Hegnauer 1966 Tanaka 1976
Jatropha curcas L.	(S) (S)	Mexico Trop. America, Asia	X					x		2.131 2.61	Dressler 1953 Tanaka 1976
J. multifida L.	(S)	Trop. America, Asia						X		2.61	Tanaka 1976
<i>Manihot esculenta</i> Crar many methods of detox		practiced worldwid		nogen	ic gly	coside	es				Hegnauer 1966 Lancaster et al.
	(T) (T)	Malay Penninsula Congo	X	x		x		х		2.233 2.43	1982 Skeat & Blagden 1906 Miracle 1967

Plant Group Family			Che	emistry					Reference
Scientific Name Plant Part ()		Location	Code	xle					
Mercurialis annua L.	(P)	Germany	cya X	nogenic gl	2.121	Hegnauer 1966 Hendrick 1919			
Fabaceae									
Abrus precatorius L.	(F,S)	Bay of Bengal	lect X	ins, alkalo	ids			2.131	Wei et al. 1974; Mears & Mabry 1971; Bhargava 1983
Acacia albida Delile	(S)	S.Africa	х	Х		Х	Х	2.28123	Scudder 1971
Canavalia obtusifolia D	C								
	(S)	Australia	Х	Х		Х		2.2113	Irvine 1957

octahydroindolizine alkaloid

pyrrolizidine alkaloids

Х

(S)

(S)

(S)

Cassia occidentalis L.

Cunningh. & Fraser

C. mucronata Desv.

Crotalaria spp.

Castanospermum australe A.

W. Africa

Australia

E. Trop. Asia

Х

Х

Х

Х

X X X

TABLE 1. Survey of Traditional Methods of Plant Detoxification. Each report is categorized for the seven basic techniques outlined

1.00

Irvine 1952

Tanaka 1976

Mears & Mabry

Tanaka 1976

Harris 1987

1981;

1971

2.131

2.234

2.2147

Hohenschutz et al.

Plant Group Family			Chemistry	Reference
Scientific Name Plant Part ()	_*	Location	Processing Classification 1 2 3 4 5 6 7 Code	
Entada phaseoloides M	em.			Yasuraoka et al.
	(S)	Australia	saponíns, entegenic acid X X X 2.233	1977; Cribb & Cribb 1975
Erythrina veriegata L.	(S)	Trop. Asia	erythrina alkaloids X 2.131, 2.111	De Silva & Snieckus 1978; Tanaka 1976
Intsia retusa Kurz.	(F)	E. Malaysia	X X X 2.214	Tanaka 1976
Lupinus albus L.	(S)	ltaly	quinolizidine alkaloids, saponins X 2.121	Mears & Mabry 1971; Hudson & El-Ditrawi 1979; Hendrick 1919
L. hirsutus L.	(S)	Europe	quinolizidine alkaloids X 2.121	Batra & Rajagopalan 1978 Tanaka 1976
L. littoralis Dougl.	(R)	British Columbia	X 2.121, 2.151	Turner & Bell 1973
L. luteus L.	(S)	Italy	quinolizidine alkaloid X 2.121	Murakoshi et al. 1979; Tanaka 1976

Plant Group		Chemistry		Reference	
Family Scientific Name Plant Part ()	Location	Processing Classification 1 2 3 4 5 6 7	Code		
L. mutabilis Sweet		······································		Hatzold et al. 1983 Hudson & El-Difrawl 1979;	
(S)	Andes, South America	quinolizidine alkaloids, saponins X X	2.234, 2.211	Gade 1969; Sauer 1950	
L. termis Forsk.		quinolizidine alkaloids		Gabrial & Morcos 1976;	
(S)	Mediterranean	x	2.211	Tanaka 1976	
Mucuna sp.		proteinase inhibitors, canavanine		Mears & Mabry 1971; Bell 1971	
M. cochinchinensis A. Chev (S)	r. Trop. Asia	x	2.211	Tanaka 1976	
Neorautanenia spp.		rotenoids, pterocarpans		Brink et al. 1977	
N. mitis (A. Rich.) Verd. (R	S. Africa	X X X X	2.2182	Scudder 1971	
Olneya tesota A. Gray (S)	Mexico	X X	2.2812	Felger & Moser 1976	
Pachyrrhizus erosus Urb. (P. angulatus Rich.) (T	China	x	2.11	Hedrick 1919	
Prosopis spp.		non-protein amino acids		Krauss & Reinbothe 1973	

100 M

Plant Group		Reference									
Family Scientific Name Plant Part ()		Location	Pro 1	cessin 2	ıg Cla 3	Code					
P. pubescens Benth.	(S)	W. North America	X		X	x	Parts 11 ab.			2.13, 2.3, 2.41	Castetter & Bell 1942
P. juliflora DC	(S)	W. North America				х		x		2.41141	Hodge 1907; Castetter 1935
Tamarindus indica L.	(2)	0.464			lutini	ns		**	11.9	0.00100	Toms & Western 1971;
^	(S)	S. Africa	X	X	.			X	X	2.28123	Scudder 1971
Fagaceae											
Quercus spp.			tan	nic ac	id						Hegnauer 1966
· · ·	(S)	E. North America		x					Х	2.261	Gilmore 1932; Waugh 1916
	(S)	W. North America	х	X				х	Х	2.28123; 2.242	Zigmond 1981; Barrett & Gifford 1933; Gifford 1936
	(S)	W. North America		х		х		х		2.4123	Barrett 1952; Chestnut 1902
	(S)	Persia		Х				Х		2.232	Gifford 1936
	(S)	Japan	х							2.281	Gifford 1936
	(S)	Sardinia	х			х				2.4123	Gifford 1936
Q. chrysolepis Liebm.	(S)	W. North America				х				2.431	Gifford 1936

Plant Group			Chemistry					Reference
Family Scientific Name Plant Part ()		Location	Processing Cla 1 2 3	Code				
Q. garryana Dougl.	(S)	W. North America		x			2.431	Guther 1973
Flacourtiaceae								
Pangium edule Reinw	σ.		cyanogenic gl	vcosides				Hegnauer 1966
ex Blume	(F)	Malay Penninsula	X X	,	х		2.233	Skeat & Blagden 1906
	(S)	Philippines	х				2.211	Brown 1920
	(S)	Trop. Asia, Micronesia	X			· •••	2.311	Tanaka 1976
Fumariaceae								
Corydalis ambigua Cl	ham. &		protoberberine	alkaloids				Hegnauer 1969
Schlecht.	(B)	Saghalin Is.	X	X			2.2712, 2.4112	Laufer 1930
Haemadoraceae								
Haemadorum coccine	21771		phenylenone					Hegnauer 1986
Hook. (H. corybosum		Australia	X	Х			2.41131, 2.41142	Grey 1841; Crib & Cribb 1975; Laufer 1930

Plant Group						Reference					
Family Scientific Name Plant Part ()		Location	Proce 1	essing 2	; Clas 3	sifica 4	tion 5	6	7	Code	
Hippocastanaceae				·							ан у у у аланта адаа у у у у у у у у у у у у у у у у у
Aesculus spp.			sapo	nins	(escin)					Hegnauer 1966
A. californica (Spach) N	Jutt. (S)	California	X	X				X		2.243, 2.333	Chestnut 1902; Zigmond 1981; Barrett & Gifford 1933; Barrett 1952
A. indica Colebr. ex W	all. (S}	Himalayas		х						2.211	Hedrick 1919
A. turbinata Blume	(S)	Japan	sapo: X	nins X				x	Х	2.262	Hegnauer 1966; Tanaka 1976
Icacinaceae							-				arana (ha ha a a a a a a a a a a a a a a a
Icacina spp.			diter	pene	alkal	oids					On'okoko & Vanhaelen 1980
I. senegalensis A. Juss.	(T)	W. Africa		x	х			x		2.2326	lrvine 1952
Lamiaceae		annan ar an	H.HH.275.0-4							. <u> </u>	میر ۱۹۹۹ ۱۹۹۵ می اور در این او
Ajuga nipponensis Mak	tino (L)	Japan	diter	pene: X	ajuga	unari	n			2.221	Shimomura et al 1981, Tanaka 1976

Same Sand Speed and states and second second

Plant Group			Che	emisti	y						Reference
Family Scientific Name		Location	Pro	cessin	g Cla	ssifica	tion				
Plant Part ()			1	2	3	4	5	6	7	Code	۰
anga gu an		e gannan ar a the territoria and th									ang aga ga ang ang ang ang ang ang ang a
Lauraceae											
Beilschmeidia bancrofti	й (S)	Australia	Х	Х						2.233	Harris 1987
B. tarairi Kirk. (Nesoda)	рhпe										
tarairi)	(S)	New Zealand	Х							2.121	Hedrick 1919
B. tawa Kirk. (N. tawa)	$\{\mathbf{F}\}$	New Zealand	х				х			2.5111	Wright-St. Clair 1972
	(S)	New Zealand	Х							2.121	Hedrick 1919
Endiandra pubens Meis	sn.										Bandaranayake
*				penoic	ls						et al. 1981;
	(S)	Australia	X	Х				Х		2.233	Cribb & Cribb 1975; Harris 1987
E. palmerstonii C.T. W	hite										Hams 1987
	(S)	Australia	Х	Х				X		2.233	Cribb & Cribb 1975; Harris 1987
E. tooram	(S)	Australia	x	х						2.233	Harris 1987
Nectandra spp.			ben	zylisc	quinc	oline a	lkalo	ids			Dos Santos & Gilbert 1975
N. rodioei Hook.	(S)	Tropical South America		х				х		2.222	Lévi-Strauss 1950; Kirchoff 1950

Plant Group Family			Che	mistr	y		Reference				
Scientific Name Plant Part ()		Location	Pros 1	essin 2	g Cla 3	sifica 4	tion 5	6	7	Code	a de como de la como de
Umbellularia californica (Hook. & Am.) Nutt.	(S)	W. North America	X					х		2.133	Chestnut 1902
Lecythidaceae											
Barringtonia asiatica (L.) (B. racemosa)	Kurz. (S) (L)	Bay of Bengal	sapo X	onins X					X	2.131 2.261	Hegnauer 1966 Bhargava 1983 Watt & Breyer- Brandwijk 1962
	(F)	Indochina	х							2.111	Tanaka 1976
Liliaceae				<u></u>	<u> </u>				1. THE REAL PROPERTY.	<u>، به محمد میں میں میں میں میں میں میں میں میں میں</u>	
Allium geyera S. Wats (A. deserticola)	(B)	Arizona	x							2.131	Steggerda & Eckardt 1941
Allium tricoccum Ait.	(B)	E. North America	sapo X	onins			X			2.51, 2.52	Hegnauer 1963 Kuhm 1961
Asphodelus ramosus L.		Europe	х				х			2.12, 2.51	Tanaka 1976
<i>Chlorogalum pomeridiar</i> Kunth.	111 <i>m</i> (B)	W. No rt h America	sap X	onins						2,11	Hegnauer 1963 Harvard 1895

TABLE 1. Survey of Traditional Methods of Plant Detoxification. Each report is categorized for the seven basic techniques outlined
in the text and coded according to the schema in APPENDIX 1. (continued)

. н

وستوريفه خواست

~

A CHARGE STOL

Plant Group			Chemistry	Reference		
Family Scientific Name Plant Part ()		Location	Processing Classific 1 2 3 4	ation 5 6 7	Code	
<i>Ophiopogon japonicus</i> Ker-Gawl.	(R)	Japan	saponins		2.	Hegnauer 1986 Tanaka 1976
Polygonatum spp.			saponins			Hegnauer 1986
P. lasianthum Maxim	(Rh)	Japan	X X	x	2.222	Tanaka 1976
Zigadenus venenosus W	ats. (B)	California	veratrum alkaloids: X	zygadenine	2.2376	Windholz 1976 Ray 1963
Malvaceae						
Abutilon theophrastri M	ledik. {S}	Asia	X	X	2.2116	Tanaka 1976
Meliaceae						
Owenia cerasifera F. Mu	1ell. (F)	Australia	x		2.3	lrvine 1957
Moraceae						
Artocarpus gomeziana V	Vall. (F)	Malaysia	х		2.111	Tanaka 1976

Contraction of the second second

10. 10. 180

Plant Group			Che	mistr	y	Reference				
Family Scientific Name		Location	Pro	essin	e Cla					
Plant Part ()			1	2	3	4	Code	يەر يېلىغى بىلىغىنى ب		
								 		
Myrtaceae										
Eucalyptus bicolot A. C	Cunn. (S)	Australia	terp	enoid X	\$				2.2216	Hegnauer 1969; Roth 1897; Cribb & Cribb 1975
E. largiflorens C.T. Wh	ite (S)	Queensland, Australia		x				 - 	2.22	Cribb & Cribb 1975
Olacaceae										
Ximenia americana L.	(L)	Australia	x			,			2.11	Cribb & Cribb 1975
1	(S)	Indonesia	x		J			 	2.11	Brown 1920
Oleaceae										
Olea europaea L.	(F)	Mediterranean	oler	inopei X	n X			x	2.3115, 2.2288, 2.2588, 2.71	Windholz 1976 Hartmann & Bougas 1970

~ <u>F</u>

Plant Group Family			Reference								
Scientific Name		Location	Pro	cessin	e Cla	ssifica	tion				
Plant Part ()			1	2	3	a an					
Orobanchaceae			81 T. T				<u> </u>				
Orobanche cooperi (Gra	wi										
Heller	(St)	Mexico	X							2.13	Felger & Moser 1976
Oxalidaceae					£.,			<u>.</u>		<u>, a.a.</u>	nn mar 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
Oxalis tuberosa Molina			oxa	lic ac	id						
	(T)	Andes, South America		X		_		Х		2.216	Sauer 1950
Pandanaceae			******	****					¢.		
Pandanus spp.			alk	aloids	. dim	ethylt	rvptai	nine			Hyndman 1984
	(F)	Australia	X		,	,				2.131	Cribb & Cribb 1975
Pinaceae		аннан на трана на тра		·					<u></u>		
Pinus spp.			ten	oenes							
······································	(S)	North America	X							2.131	Havard 1895
P. ponderosa Dougl.	(S) .	W. North America	х							2.131	Steedman 1930

and the second second

Plant Group Family				Reference								
Scientific Name		Location	Proc	cessin	g Cla	ssifica	tion		7			
Plant Part ()			1	2	3	Code						
Poaceae		- <u>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>								η, δατατική τη του	9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-	
<i>Gigantochloa apus</i> Kurz Munro	& (Sh)	Indonesia	hyd X	rogen	cyani	ide				2.11	Hegnauer 1963 Tanaka 1976	
Setaria sphacelata (Schu Stapf. & Hubbard	m .)		oxa	lic aci	d						Roughan & Slack 1973;	
	(S)	S. Africa	х							2.12	Watt & Breyer-Brandwijk 1962	
Polygonaceae		₹							**********************			
Polygonum bistorta L.	(R)	N. temperate	taru X	nins X						2.2113	Hegnauer 1969 Hedrick 1919	
Pontederiaceae	~			**								
Eichhornia crassipes Sol	ms (LF)	Asia	phe X	nolic	acids,	flavo	noids	, tarın	ins	2.15, 2.11	Hegnauer 1986 Tanaka 1976	
Portulacaceae			-1									
Lewisia spp.			sape	onins							Hegnauer 1969	
L. rediviva Pursh	(R)	British Columbia	Х							2.111	Steedman 1930	

A THE AREA STORES

Plant Group			Reference							
Family Scientific Name Plant Part ()		Location	Pro 1	cessin 2	g Cla 3					
Proteaceae	<u></u>		<u> </u>					 	t at an annuar an an	an di adalah mangan sa tang kana s
Hicksbeachia pinnatifoli	a (S)	Australia	X	x					2.233	Harris 1987
Macadamia spp.			cya	nogen	ic gly	coside	`S			Hamilton & Young 1966
M. whelanii F.M. Bailey	(S)	Australia	x	x					2.2113	Cribb & Cribb 1975; Harris 1987
Ranunculaceae		and an		<u>1</u> , J, J,				 <u> </u>		
Clematis spp.			ran	uncul	in					Ruijgrok 1966
G. ianthina Koehne	(L)	Korea	х				х		2.12	Tanaka 1976
Ranunculus bulbosus L.	(R)	Europe	ran X	uncul	in				2.121	Ruijgrok 1966 Hedrick 1919
R. eisenii Kellog	(S)	W. North America	X						2.131	Tanaka 1976
R. sceleratus L.	/T 1	Japan, Eurasia	ran X	uncul	in				2.111	Misra & Dixit 1980; Tanaka 1976
	(Ļ)	japan, Eurasia	л						4.111	Lanaka 17/Q

3.000

Summer 1988

Plant Group		Che	emist		Reference							
Family Scientific Name		Location	Pro	ressir	ig Cla							
Plant Part ()			1	2	3				7	Code		
Rhizophoraceae								**************************************			- <u></u>	
Bruguiera sp.	(F)	Oceania	tanı X	nins, X	tropan	e alka	loids	x		2.2112	Barrau & Peeters 1972; Cribb & Cribb 1975; Saxton 1971; Barrau & Peeters 1972	
B. conjugata Merr. (B. gymnothiza)	(R)	Australia	X	x				x		2.223, 2.53	Cribb & Cribb 1975	
Rosaceae	<u> </u>	Annone	- <u>12</u> - NARAHAN									
Potentilla tormentilla N	leck. (R)	N. Asia, Europe	tanı X	nins						2.121	Hegnauer 1973 Hedrick 1919	
Prunus campanulata M	axim. (F)	W. Asia								2.	Tanaka 1976	
Solanaceae							<u> </u>			۲۵۱۱ من من المالي من الم	······································	
Datuta inoxia Mill. (D. meteloides DC)	(F)	W. North America	trop	ane 2	ulkaloi	ds X				2.41141, 2.41142	Hegnauer 1973 Castetter 1935	

Plant Group			Che	emistr	у	Reference					
Family Scientífic Name		Location	Pro	cessin	g Cla	ssifica	ation				
Plant Part ()			1	2	3	4	5	6	7	Code	
Lycium pallidium Mie	ers.										
	(F)	W. North America	X			Х		х		2.41252, 2.41251, 2.41242	Whiting 1939; Steggerda & Eckardt 1941
Solanum spp.			glya	coalka	loids						Hegnauer 1973
S. X curtilobum Juz. 8	s Buk.										
	(T)	Peru, Bolivia		Х		х		X		2.366, 2.41152	Johns 1986; Werge 1979
S. gilo Raddi	(L)	W. Africa	X	X				x		2.22122	Keshinro & Ketiku 1979
S. jamesii Torr.	(T)	W. North America				x				2.41152, 2.4125	Johns 1986
S. fendleri A. Gray	(T)	W. North America				x				2.41152, 2.4125	Johns 1986
S. X juzepczukii Juz. 8	& Buk.										
	(T)	Peru, Bolivia		Х		X		Х		2.366, 2.41152	Johns 1986; Werge 1979
S. simile F. Muell.											Irvine 1957
(S. semele)	(F)	Central Australia		X						2,311	

35

Plant Group				Reference							
Family Scientific Name		Location	Pro	cessin	g Cla	sifica	tion				
Plant Part ()			1	2	3	4	5	6	7	Code	
Taccaceae		namananan keya ang dikanan keya ya ang dikanan keya ya sa	·····					<u> </u>		ar mentangan sebarah di di di menganan menangan sebarah sebarah sebarah sebarah sebarah sebarah sebarah sebarah	
Tacca leontonpetalodes	л.)		tacc	alin							Scheuer et al. 1963
Kuntze. (T. involucrata)		W Africa	X	X				х		2.112, 2.222	Busson 1965; lrvine 1952
(T. pinnatifida)	(T)	Pacific	х	х				X		2.222, 2.2121, 2.2112	Lessa 1977; Barrau & Peeters 1972; Bascom 1965; Hedrick 1919; Brown 1920
	(T)	Australia	x	X	P			X		2.2123	Cribb & Cribb 1975
Tiliaceae											
Tilia japonica Simonk	(F)	Japan, China	x							2.121	Tanaka 1976
Tropaeolaceae											
Tropaeolum tuberosum & Pav.	Ruiz		ددام	cosino	later						Johns & Towers 1981;
Q F8¥.	(T)	South America	X	COSILIO	uates			x		2.11, 2.24	Sauer 1950

TABLE 1. Survey of Traditional Methods of Plant Detoxification. Each report is categorized for the seven basic techniques outlined in the text and coded according to the schema in APPENDIX 1. (continued)

Plant Group			Chemistry	Reference
Family Scientific Name Plant Part ()		Location	Processing Classification 1 2 3 4 5 6 7 Code	
Urticaceae				m
Urtica dioica L.	(L)	Europe	histamine, serotonin, acetylcholine X 2.121	Hegnauer 1973; Hedrick 1919
Valerianaceae	Part - 1 - 2	a de la construir de la constru		
Valeriana edulis Nutt.	(R)	W. North America	alkaloids: valerianin X 2.11, 2.13	Hegnauer 1973; Havard 1895; Hedrick 1919
Verbenaceae		((((((((((((((((((((((((((((((((((
Avicennia marina Vierh.	(S)	Australia	X X 2.214	Cribb & Cribb 1975
Zamiaceae				
Macrozamia spp.	(S)	Australia	MAM glycosides X X 2.213, 2.2116	de Lucca et al. 1980; Cribb & Cribb 1975
M. fraseri Miq. (M. macdonnelli)	(StS)	Australia	X 2.214	Irvine 1957

A CONTRACTOR OF A CONTRACTOR OF

Plant Group				mistr	y	Reference					
Family Scientific Name Plant Part ()		Location	Processing Classification 1 2 3 4 5 6 7 Code								
M. miquelii A. Dc.	(S)	Australia	х	x				x		2.112, 2.212	Tanaka 1976; Irvine 1957
M. spiralis Miq.	(S)	E. Australia	X					X		2.112	Tanaka 1976
Zamia sp.	(S)	Australia	MAM glycosides X X 2.2116							de Lucca et al. 1980; Grey 1841	
Zamia chigua Cuatr.	(S)	Panama	х	x						2.2112	Duke 1970
Z. furfuracea Ait.	(R)	Mexico, Central America								2.	Tanaka 1976
Zamia pumila L (Z. integrifolia)	(T)	Caribbean		x						2.2	Palmer 1878
Zygophyllaceae									<u> </u>		
Balanites aegyptica Del.	(L) (S)	Africa W. Africa	saps X X	onins						2.121 2.272	Hegnauer 1973 Burkill 1985 Busson 1965

TABLE 1. Survey of Traditional Methods of Plant Detoxification. Each report is categorized for the seven basic techniques outlined in the text and coded according to the schema in APPENDIX 1. (continued)

*Plant Part: B = bulb; F = fruit; Fb = fruiting body; L 5 leaf; La = latex; P = plant; R = root; Rh = rhizome; S = seed; Sh = shoot; St = stem; T = tuber.

may also denature plant enzymes that are necessary to liberate certain active principals from glycosides such as glucosinolates or cyanogenic glycosides. However, in these cases liberation of active isothiocyanates and hydrogen cyanide, respectively, may subsequently be carried out by bacterial or endogenous enzymes. Proteinaceous toxins such as lectins and proteinase inhibitors are usually effectively denatured by heat.

Boiling and some form of roasting or baking are the most common cooking techniques used worldwide. Although many plant foods are eaten raw, most are cooked in some way. However, more often than not detoxification is not the explicit function of the cooking process. Roasting was perhaps the only cooking method used during most of human history since boiling requires watertight and heat-resistant containers. Many peoples solved the problem of applying heat to water by placing heated rocks directly in the contents of watertight but not heat resistant containers. Clay pots can be used for boiling foods, but it was the introduction of metal pots that greatly increased the distribution of this technique.

2. Detoxification by solution.—The use of water to remove toxins basically involves the dissolving of compounds in the water and their leaching from the food. The process is enhanced in specific and often sophisticated ways and takes many forms as is apparent in level 2.2 of APPENDIX 1. Heat accelerates the leaching process. When the solubility of a toxin is low a turnover of water, either by repeated pouring off and replacing, by placing the object in running water, or by passing water through a food, will help. Salt increases the polarity of the aqueous environment and can help in making certain compounds more soluble. Any process which causes more tissue to be exposed to the water or which liberates plant constituents by destroying the integrity of the plant cells will speed up leaching.

3. Detoxification by fermentation.—Simple fermentation techniques are part of the repertoire of detoxification of human groups worldwide. Microorganisms are ubiquitous and fermentation proceeds spontaneously under appropriate conditions. The metabolism of microorganisms alters the chemical composition of food. Basic techniques involve burying a food plant in the ground or in swamps, or enclosing it in some kind of container so that conditions conducive to fermentation can be achieved.

4. Detoxification by adsorption. —Chemical constituents in plants may be bound by physical and chemical processes to other substances. Charcoal is the standard detoxification substance used in cases of acute toxicity in clinical settings in modern medicine (Gilman *et al.* 1985). Both charcoal and clay are made up of small particles and have large surface areas. They undergo weak interactions with organic compounds, primarily through van der Waals and clectrostatic forces. Clay mineral lattices may be charged (usually negatively) and adsorption of chemicals may also be by ion-exchange (Johns 1986).

Humans deliberately use the adsorptive properties of clay to bind toxins in food in ways that appear to be elaborations of the geophagous behavior of animals (Johns 1986). Detoxification basically involves adding clay directly to food plants during processing or at the time of ingestion, or soaking the plant product in wet mud.

5. Detoxification by drying. —Drying is likely to be an effective technique for removing volatile toxins from food and is usually used in combination with one of the other methods of detoxification. More often than not material is simply dried by placing it in the sun, although ovens or kilns are used in some circumstances.

6. Detoxification by physical processing.—Techniques such as grating, grinding, pounding, freezing etc. which break down the tissues of plants are collectively termed

JOHNS & KUBO

comminution (Coursey 1973). Comminution will greatly enhance fermentation, solubilization and other processes. In methods that utilize the metabolic machinery of the plant cell comminution is a primary means of detoxification. Enzymes contained in the same tissue breakdown certain more stable allelochemicals such as cyanogenic glucosides or glucosinolates to release compounds which are volatile, water-soluble or heat labile.

Grating of cassava (Manihot esculenta) is a widespread mechanism for detoxifying bitter varieties of this important staple. Hydrogen cyanide, enzymatically liberated from cyanogenic glycosides, is released into the atmosphere during processing rather than while the plant is being chewed or digested. Processes employed with cassava are diverse and many are elaborate seemingly beyond necessity since comminution followed by enough time for the enzymatic reaction to occur is sufficient (Seigler and Pereira, 1981).

7. Detoxification by pH change.—Change in pH can affect the solubility of many chemicals. In addition acidic and alkaline conditions can lead to the hydrolysis of compounds.

The additions of ashes and acids to foods play important roles in a number of chemical processes affected by pH change. Although acid hydrolysis will degrade many organic compounds including glycosides and amides, concentrated acidic substances are rarely directly employed in traditional food processing. Acids formed during fermentation may contribute to the breakdown and/or the solubilization of some toxins. Acidic fermented products such as vinegar, and organic acids from fruits such as tamarind, are occasionally added to foods and may serve some role in detoxification. Pickling is carried out in combination with other techniques and may play a role in producing a final nontoxic product. Tamarind pulp is widely used in tropical regions as a flavor additive to food, although because of its acidity it may play other roles in altering food quality. Tartaric acid which makes up 10% of the weight of tamarind pulp [Windholz 1976] is a good organic buffer. A concentrated solution of tamarind that we tested had a pH of 2.5 although its buffering capacity was not assayed. We are familiar with three cases where tamarind is used to detoxify food. Two of these cases involve plants in the Araceae which may have high levels of calcium oxalate. Significantly tartaric acid may be effective in increasing the solubility of the highly irritating crystals (raphides) of this compound (Oke 1969). The third case of tamarind use with toxic plants involves roots of the legume Neorautanenia mitis. The genus is characterized by rotenoids and other toxic flavonoid derivatives.

Alkali materials in the form of lye from plant ash and mineral lime are readily available and widely applied. They participate in hydrolysis reactions of common chemical linkages such as ester and acetals. Ashes are usually used in solution, often with heat which greatly enhances the hydrolysis process.

It is known that interactions occurring when different chemicals are ingested together by animals may reduce the toxicity of one or both of them. The documented cases involve interactions of tannins with cyanogenic glucosides [Goldstein and Spencer 1985] and saponins [Freeland *et al.* 1985]. There is no indication from the present survey that chemical interactions such as these are exploited by humans to detoxify foods. Many processes are subtle, and even when effective would not necessarily be understood or articulated by people practicing them. Further research examining the effectiveness of traditional processing must recognize the complexity of chemical systems and should be observant for more subtle ways by which humans may have exploited poisonous plants to their advantage. Summer 1988

THE ORIGIN OF FOOD PROCESSING TECHNIQUES

The question of how humans learned to detoxify plants in particular ways is difficult to answer. The ubiquity of the various techniques and their sophistication supports their antiquity. The use of clays for their adsorption properties has antecedents in animal behavior (Johns 1986). Heating, leaching, fermentation, and drying of foods all have simple cause and effect relationships with change in food palatability that could be observed in common events. Harris (1977) suggested that plants that are detoxified by leaching were originally used for fish poisons. Plants that had been left in streams could be subsequently discovered to be acceptable foods. Comminution of plants and the use of lye and salt to facilitate detoxification require greater sophistication. However, the use of tools is a longstanding human trait that would have been involved in detoxification since early in human history. Once tools were used to open nuts or other foods, refining the techniques to diminish the foods further is not a great leap for human beings. The use of salt in boiling would take place once boiling itself was established. Salt water could have been used initially in coastal areas simply because of its availability. The use of lye also would follow cooking, and ashes would be readily available from cooking sites. Perhaps hot coals or ash covered rocks were initially added only to heat water, but consequently were discovered to improve the food. The use of alkali and acidic substances in processing appears to represent the most sophisticated of the basic techniques.

A preference for nutrient dense foods such as animal protein and fats and concentrated carbohydrates in fruits, tubers and seeds has characterized the genus *Homo* (Milton 1987) and directed our technological achievements over the past 2 million years for scavenging, hunting and processing plant products. The energetic reward offered by dense carbohydrate sources would have provided a strong motivation for the development of detoxification processes and once a technology for detoxifying plant foods was established it is not surprising that deliberate elaboration using available resources would occur. Once the basic mechanisms of detoxification were widespread, their refinement to deal in sophisticated ways with particular plants was a function of human adaptability and intelligence. The adaptation of humans to exploit the resources of a new environment involves the application of detoxification techniques to utilize the available plant resources. Where human groups were in intimate association with a food resource over many generations it is not surprising that considerable refinements took place.

ACKNOWLEDGEMENTS

We wish to acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship and University Research Fellowship to TJ). F. J. Hanke made many helpful suggestions during the course of this project and K. V. Milton and D. B. McKey made useful comments on an earlier draft.

LITERATURE CITED

- AHMED, Z. H., A. M. RIZK, F. M. HAM-MOUDA and M. M. SEIF EL-NASR. 1972. Naturally occurring glucosinolates with special reference to those of family Capparidaceae. Planta Med. 21:35-60.
- ANDERSON, K. E., A. H. CONNEY and A. KAPPAS. 1986. Nutrition as an environmental influence on chemical metabolism in man. Pp. 39-54. *in* Ethnic differences in reactions to drugs and

xenobiotics, (W. Kalow, H. W. Goedde, and D. P. Agarwal, eds.). Alan R. Liss, New York.

- BANDARANAYAKE, W., J. E. BANFIELD, D. ST. C. BLACK, G. D. FALLON and B. M. GATEHOUSE. 1981. Constituents of *Endiandra* species. I. Endiandric acid, a novel carboxylic acid from *Endiandra introrsa* (Lauraceae), and a derived lactone. Aust. J. Chem. 34:1655-1677.
- BARRAU, J. and A. PEETERS. 1972. Histoire et préhistoire de la préparation des aliments d'origine végétale. J. Sociéte des Océanistes. 35:141-152.
- BARRETT, S. A. 1952. Material aspects of Pomo culture. Part One. Bulletin Public Museum City Milwaukee 20:1-260.
- and E. W. GIFFORD, 1933. Miwok material culture. Bulletin Public Museum City Milwaukee 2:117-376.
- BASCOM, W. R. 1965. Ponape: a Pacific economy in transition. Anthropol. Records, Univ. California Press, Berkeley 22:1-156.
- BATRA, V. and T. R. RAJAGOPALAN. 1976. Alkaloids of Lupinus hirsutus [Leguminosae]. Indian J. Chem. Sect. B. 14B:636-637.
- BELL, E. A. 1971. Comparative biochemistry of non-protein amino acids. Pp. 179-206 in Chemotaxonomy of the Leguminosae, [J. B. Harborne, D. Boulter and B. L. Turner, eds.). Academic Press, London.
- BHARGAVA, N. 1983. Ethnobotanical studies of the tribes of Andaman and Nicobar Islands, India. I. Onge. Econ. Botany 37: 110-119.
- BRINK, A. J., G. H. J. RALL and J. C. BREYEN-BACH. 1977. Prerocarpans of Neorautanenia edulis and N. amboensis. Phytochem. 16:273-276.
- BROWN, W. H. 1920. Wild food plants of the Philippines. Bull. No. 21. Department of Agriculture and Natural Resources Bureau of Forestry, Manila.
- BRUNING, R. and H. WAGNER. 1978. Ubersicht über die Celastraceen-Inhaltsstoffe: Chemie, Chemotaxonomie, Biosynthese, Pharmakologie. Phytochem. 17:1821-1858.
- BURKILL, H. M. 1985. The useful plants of West Tropical Africa. Vol. 1 Royal Botanic Gardens, Kew.

- BURKILL, I. H. 1939. Notes on the genus Dioscorea in the Belgian Congo. Bulletin du Jardin Botanique de L'État, Bruxelles. 15:345-428.
- BUSSON, F. 1965. Plantes Alimentaires de l'Ouest Africain. Leconte, Marseilles.
- CASTETTER, E. F. and W. H. BELL. 1942. Pima and Papago Indian agriculture. Univ. New Mexico Press, Albuquerque.
- CASTETTER, E. F. 1935. Uncultivated native plants used as sources of food, ethnobiological studies in the American Southwest I, Univ. New Mexico Bull. No. 266, Biological Series. Vol. 4, No. 1, 1-62.
- CHESTNUT, V. K. 1902. Plants used by the Indians of Mendocino County, California. Contrib. United States National Herbarium 7:295-422.
- CHRISTIANSEN, J. A. and N. R. THOMPSON. 1977. The utilization of "bitter" potatoes in the cold tropics of Latin America. Pp. 212-215 in Proceedings of the Fourth Symposium of the International Society for Tropical Root Crops. [J. Cock, R. MacIntyre and M. Graham, eds.]. International Development Research Centre, IDRC-080e, Ottawa.
- CLARK, J. D. and J. W. K. HARRIS. 1985. Fire and its roles in carly hominid lifeways. Afr. Archaeol. Rev. 3:3-27.
- COCK, J. H. 1982. Cassava: a basic energy source in the tropics. Science 218:755-762.
- CORKILL, N. L. 1948. The poisonous wild cluster yam, Dioscorea dumetorum Pax, as famine food in the Anglo-Egyptian Sudan. Ann. Trop. Med. Parasit. 42:278-287.
- COURSEY, D. G. 1967. Yams: an account of the nature, origins, cultivation and utilization of the useful members of the Dioscoreaceae. Longmans, London.
- CRIBB, A. B. and J. W. CRIBB. 1975. Wild Food in Australia. William Collins Pty Ltd, Sidney.
- DELAVEAU, P., B. KOUDOGIBO and J.-L. POUSSET. 1973. Alcaloïdes chez les Capparidaceae. Phytochem. 12:2983-2895.

DE LUCCA, P., A. MORETTI, S. SABATO, G.

SINISCALCO GIGLIANO. 1980. The ubiquity of cycasin in cycads. Phytochem. 19:2230-2231.

- DE SILVA, S. O., and V. A. SNIECKUS. 1978. Brythrina and related alkaloids. Alkaloids [London]. 8:137-143.
- DOS SANTOS FILHO, D., and B. GILBERT. 1975. The alkaloids of *Nectandra megapotomica*. Phytochem. 14:821-822.
- DRESSLER, R. L. 1953. The pre-columbian cultivated plants of Mexico. Bot. Mus. Leaflets, Harvard Univ. 16:115-172.
- DUKE, J. E. 1970. Ethnobotanical observations on the Choco Indians. Econ. Botany 24:344-355.
- EL-OLEMY, M. M., and J. REISCH. 1979. Isolation of batatsin I from Dioscorea dumetorum rhizomes. Z. Naturforsch. 34:288-289.
- FELGER, R. S., and M. B. MOSER. 1976. Seri Indian food plants: Desert subsistence without agriculture. Ecol. Food Nutr. 5: 13-27.
- FREELAND, W. J., P. H. CALCOTT and L. R. ANDERSON. 1981. Tannins and saponin: interaction in herbivore diets. Biochem. Syst. Ecol. 13:189-193.
- GABRIAL, G. N., and MORCOS, S. R. 1976. The use of *Lupinus tennis* L. cultivated in Egypt as a food protein supplement, Z. Ernachrungswiss. 15:333-339.
- GADE, D. W. 1969. Vanishing crops of traditional agriculture: the case of tarwi (Lupinus mutabilis) in the Andes. Proceedings Assoc. Amer. Geographers. 1:47-51.
- GADE, D. W. 1970. Ethnobotany of Cañihua (Chenopodium pallidicaule), rustic seed crop of the Altiplano. Econ. Botany 24: 55-61.
- GANJIAN, I., I. KUBO, and P. FLUDZINSKI. 1983. Insect antifeedant elemanolide lactones from Vernonia amygdalina. Phytochem. 22:2525-2526.
- GARNIER, R., F. CONSO, M. L. EFTHY-MIOU, G. RIBOULET and M. GAUTH-IER. 1978. Acute poisoning by *Gyromita* esculenta. Toxicol. Eur. Res. 1:359-364.
- GASQUET, M., D. BAMBA, A. BARDJAMIAN, G. BALANSARD, P. TIMON-DAVID, and J. METZGER. 1985. Action amoebicide et anthelminthique du vemolide et de l'hydroxyvernoilide isoles des feuilles

de Vernonia colorata (Willd.) Drake. Eur. J. Med. Chem. Chim. Ther. 20:111-115.

- GIFFORD, E. W. 1936. California balanophagy. Pp. 87-98 in Essays in Anthropology. Univ. California Press, Berkeley.
- GILMAN, A. G., L. S. GOODMAN, T. W. RALL, and F. MURAD, (eds.). 1985. Goodman and Gilman's the pharmacological basis of therapeutics. 7th Ed. Macmillan Publishing Co., Inc., New York.
- GILMORE, M. R. 1932. Some Chippewa uses of plants. Papers Mich. Acad. Sci. Arts Letters. 17:119-143.
- GOLDSTEIN, W. S., and K. C. SPENCER. 1985. Inhibition of cyanogenesis by tannins. J. Chem. Ecology. 11:847-858.
- GREGER, H. 1977. Anthemidae—chemical review. Pp. 499- in The Biology and Chemistry of the Compositae, Vol. II, (V. H. Heywood, J. B. Harborne, B. L. Turner, eds.). Academic Press, London.
- GREY, G. 1841. Journals of two expeditions of discovery in northwest and western Australia during the years 1837, 38 and 39. Vol. 2. T. and W. Boone, London.
- GUNTHER, E. 1973. Ethnobotany of Western Washington. Univ. Washington Press, Seattle.
- HAMILTON, R. A., and R. L. YOUNG. 1966. Transfer of bitterness in Macadamia integrifolia by grafting. California Macadamia Society Yearbook.
- HARBORNE, J. B. 1982. Introduction to ecological biochemistry. 2nd Edition, Academic Press, London.
- HARRIS, D. R. 1977. Alternative pathways toward agriculture. Pp. 179-243 *in* Origins of Agriculture, (C.A. Reed, ed.). Mouton Publishers, The Hague.
- 1987. Aboriginal subsistance in a tropical rain forest environment: food procurement, cannibalism, and population regulation in northeastern Australia. Pp. 357-385 *in* Food and evolution: Toward a theory of human food habits, (M. Harris and E. B. Ross, eds.). Temple Univ. Press, Philadelphia.
- HARRIS, G. H. 1890. Root foods of the Seneca Indians. Rochester Acad. Sei. 1:106-114.
- HARTMANN, H. T., and P. G. BOUGAS. 1970. Olive production in Greece. Econ. Botany. 24:443-459.
- HASAPIS, X., A. J. MACLEOD, and M. MOR-

EAU. 1981. Glucosinolates of nine Cruciferae and two Capparaceae species. Phytochem. 20:2355-2358.

- HATZOLD, T., I. ELMADFA, R. GROSS, M. WINK, T. HARTMANN and L. WITTE. 1983. Quinolizidine alkaloids in seeds of *Lupinus mutabilis*. J. Agric. Food Chem. 31:934-938.
- HAVARD, V. 1895. Food plants of the North American Indians. B. Torrey Bot. Club. 22:98-123.
- HAYDEN, B. 1981. Subsistence and ecological adaptations of modern hunter/gatherers.
 Pp. 344-421 in Ornnivorous primates. (R.S.O. Harding and G. Teleki, eds.).
 Columbia Univ. Press, New York.
- HECKER, E. 1977. New toxic, irritant and cocarcinogenic diterpene esters from Euphorbiaceae and Thymelaeaceae. Pure Appl. Chem. 49:1423-1431.
- HEGNAUER, R. 1962-1986. Chemotaxonomie der Pflanzen. Vol. I-VII. Birkhauser Verlag, Basel.
- HEMBREE, J. A., C.-J. CHANGE, J. L. MCLAUGHLIN, G. PECK, and J. M. CASSADY. 1978. The anticancer activity of Semecarpus anacardium. I. 9KB active pentadecylcatechols. Lloydia 41:491-493.
- HEDRICK, U. P. (ed.) 1919. Sturtevant's Notes on Edible Plants, New York Agricultural Experimental Station, Albany.
- HODGE, F. W. 1907. The Narrative of Alvar Nunez Cabeza de Vaca. Pp. 12-126 in Spanish Explorers in the Southern United States 1528-1543. New York.
- HOHENSCHUTZ, L. D., E. A. BELL, P. J. JEWESS, D. P. LEWORTHY, R. J. PRYCE, E. ARNOLD and J. CLARDY. 1981. Castanospermine, a 1,6,7,8-tetrahydroxyoctahydroindolizine alkaloid, from seeds of *Castanospermum australe*. Phytochem. 20:811-814.
- HUDSON, B. J. F., and E. A. EL-DIFRAWI. 1979. The sapogenins of the seeds of four lupin species. J. Plant Foods. 3:181-186.
- HUSSEY, J. S. 1974. Some useful plants of early New England. Econ. Botany. 24:311-337.
- HYNDMAN, D. C. 1984. Ethnobotany of Wopkaimin Pandanus: significant Papua New Guinea plant resource. Econ. Botany. 38:287-303.
- IRVINE, F. R. 1952. Supplementary and emergency food plants of West Africa. Econ.

Botany. 36:84-99.

- ______. 1957. Wild and emergency foods of Australian and Tasmanian Aborigines. Oceania. 28:113-142.
- ISACC, G. L. 1984. The archaeology of human origins: studies of the Lower Pleistocene in East Africa 1971-1981 in Advances in world archaeology, Vol. 3, (F. Wemdorf and A. E. Close, eds.). Academic Press, Orlando.
- JOHNS, S. R., and J. A. LAMBERTON. 1973. Elaeocarpus alkaloids. Alkaloids 14:325-346.
- JOHNS, T. 1986. Detoxification function of geophagy and domestication of the potato. J. Chem. Ecol. 12:635-646.
- and G. H. N. TOWERS. 1981. Isothiocyanates and thioureas in enzyme hydrolysates of *Tropaeolum tuberosum*. Phytochem. 20:2687-2689.
- JOHNSTON, A. 1970. Blackfoot Indian utilization of the flora of the northwestern Great Plain. Econ. Botany. 24:301-324.
- KARNICK, C. R. 1971. Phytochemical investigation of some *Dioscorea* species and varieties found in India. Quat. J. Crude Drug Res. 11:1761-1773.
- KESHINRO, O. O., and A. O. KETIKU. 1979. Effect of traditional cooking methods on the ascorbic acid content of some Nigerian leafy and fruit vegetables. Food Chem. 4:303-310.
- KIRCHOFF, P. 1950. The Warrau. Pp. 869-881 in Handbook of South American Indians, Vol. 3, (J. H. Steward, ed.). Bureau American Ethnology 143, Washington.
- KRAUSS, G.J., and H. REINBOTHE. 1973. Die freien Aminosauren in Samen von Minosaceae. Phytochem. 12:125-142.
- KROEBER, A. L. 1950. The Chibcha. Pp. 887-909 in Handbook of South American Indians, Vol. 2, (J. H. Steward, ed.). Bureau American Ethnology 143, Washington.
- KUHM, H. W. 1961. Uses of native herbs by Wisconsin Indians. Wisconsin Archeol. 42:97-132.
- KUHNLEIN, H. V., and N. J. TURNER. 1986. Cow-parsnip (*Heracleum lanatum* Michx.) an indigenous vegetable of native people of northwestem North America. J. Ethnobiol. 6:309-324.
- LABOURET, H. 1937. La geographie alimentaire en Afrique Occidentale. Annales de

Geographie. 46:591-610.

- ANCASTER, P. A., J. S. INGRAM, M. Y. LIM, D. G. COURSEY, 1982. Traditional cassava-based foods: survey of processing techniques. Econ. Botany. 36:12-45.
- AUFER, B. 1930. Geophagy. Field Mus. Nat. Hist. Anthropol. Ser. 18:99-198.
- USSA, W. A. 1977. Traditional uses of the vascular plants of Ulithi Atoll, with comparative notes. Micronesia 13:129-190.
- **IEVI-STRAUSS**, C. 1950. The use of wild plants in tropical South America. Pp. 465-486 in Handbook of South American Indians, Vol. 6, (J. H. Steward, ed.). Bureau American Ethnology 143, Washington.
- MARTIN, M. A. 1971. Introduction a l'Ethnobotanique du Cambodge. Editions du Centre National de la Recherche Scientifique, Paris.
- IEARS, J. A., and T. J. MABRY. 1971. Alkaloids in the Leguminosae. Pp. 73-178 in Chemotaxonomy of the Leguminosae, J. B. Harborne, D. Boulter and B. L. Turner, eds. |. Academic Press, London.
- METRAUX, A. 1950. Ethnography of the Chaco. Pp. 197-370 in Handbook of South American Indians, Vol. 1., (J. H. Steward, ed.). Bureau American Ethnology 143, Washington.
- MILTON, K. 1987. Primate diets and gut ŝ. morphology: implications for hominid evolution. Pp. 93-115 in Foods and Evolution. (M. Harris and E. B. Ross, eds.). Temple Univ. Press, Philadelphia.
- MIRACLE, M. P. 1967. Agriculture in the Congo Basin. Univ. Wisconsin Press, Madison.
- MISRA, S. B., and S. N. DIXIT. 1980. Antifungal principle of Ranunculus sceleratus. Econ. Botany. 34:362-367.
- MOORE, R. E. 1977. Volatile compounds from marine algae. Accounts Chem. Res. 10:40-47.
- MOYER, B. G. 1979. 3-Nitropropanoyl-D-
- MOYER, B. G. 1979. 3-Nitropropanoyl-D-glycopyranoses of Corynocarpus laevi-gatus. Phytochem. 18:111-113. MURAKOWSHI, L, K. TORIIZUKA, J. HAGI-MURAKOWSHI, J. Z. TORIZUKA, J. TORIZU

- NAHRSTEDT, A. 1975. Triglochinin in Araceen. Phytochem. 14:2627-2628.
- OKE, O. L. 1969. Oxalic acid in plants and nutrition. World Rev. Nutr. Dietetics. 10:262-303.
- ON'OKOKO, P., and M. VANHAELEN. 1980. Two new diterpene-based alkaloids from Icacina guesfeldtii. Phytochem. 19:303-305.
- OSHIMA, Y., T. IWAKAWA, and H. HIKINO. 1983. Alismol and alismoxide, sesquiterpenoids of Alisma rhizomes. Phytochem. 22:183-185.
- PALMER, E. 1878. Plants used by the Indians of the United States. Am. Nat. 12:593-606, 646-655.
- RAY, V. F. 1963. Primitive Pragmatists: The Modoc Indians of Northern California. Univ. Washington Press, Seattle.
- ROTH, W. E. 1897. Ethnological Studies Among the North-west-central Queensland Aborigines. Edmund Gregor, Government Printer, Brisbane.
- ROUGHAN, P. G., and C. R. SLACK. 1973. Simple methods for routine screening and quantitative estimation of oxalate content of tropical grasses. J. Sci. Food Agr. 24: 803-811.
- RUIJGROK, H. W. L. 1966. Distribution of ranunculin and cyanogenetic compounds in the Ranunculaceae. Pp. 175-186 in Comparative Phytochemistry, (T. Swain, ed.). Academic Press, London.
- SAUER, C. O. 1950. Cultivated plants of South and Central America. Pp. 487-543 in Handbook of South American Indians, Vol. 6, [J. H. Steward, ed.]. Bureau American Ethnology 143, Washington.
- SAXTON, J. E. 1971. Tropane alkaloids. Alkaloids 1:55-58.
- SCHEUER, P. J., C. E. SWANHOLM, L. A. MADAMBA and W. R. HUDGINS. 1963. The constituents of Tacca leontopetaloides. Lloydia 26:133-140.
- SCUDDER, T. 1971. Gathering among African woodland savannah cultivators A case study: The Gwembe Tonga. Zambian Papers. 5:1.150.
- SEIGLER, D. S., and J. F. PEREIRA. 1981. Modernized preparation of casave in the Llanos Orientales of Venezuela. Econ. Botany. 35:356-362.

- SHIMOMURA, H., Y. SAHIDA, K. OGAWA and Y. IITAKA. 1981. Ajugamarin, a new bitter diterpene from Ajuga nipponensis Makino. Tet. Let. 22:1367-1368.
- SINGH, H. B., and R. K. ARORA. 1978. Wild Edible Plants of India Indian Council of Agricultural Research, New Delhi.
- SKEAT, W. W., and C. O. BLAGDEN. 1906. Pagan Races of the Malay Penninsula. Vol. 1. Macmillan and Co., Limited, London.
- STAHL, A. B. 1984. Hominid dietary selection before fire. Curr. Anthropol. 25:151-168.
- STAHL, A. B. 1987. Plant food processing: implications for dietary quality in Foraging and Farming: the Evolution of Plant Domestication, (D. R. Harris and G. C. Hillman, eds.). Allen and Unwin, London. In press.
- STEEDMAN, E. V. 1929. Ethnobotany of the Thompson Indians of British Columbia. Bureau of American Ethnology, 45th Annual Report. Smithsonian Institution, Washington, D.C.
- STEGGERDA, M., and R. B. EDKARDT. 1941. Navajo foods and their preparation. J. Am. Diet. Assoc. 17:217-225.
- SUMATHI, S., T.N. PATTABIRAMAN. 1977. Natural plant enzymes inhibitors. V. A trypsin/chymottypsin inhibitor from Alocasia macrorhiza tubers. Biochim. Biophys. Acta 485:167-178.
- TAKEDA, K. 1972. The steroidal sapogenins of the Dioscoreaceae. Prog. Phytochem. 3:287-333.
- TANAKA, T. 1976. Tanaka's Cyclopedia of Edible Plants of the World. Keigaku Publishing Co., Tokyo.
- TAYLOR, D. A., and A. J. HENRY. 1973. Alkaloids from Courbonia glauca rhizomr. Phytochem. 12:1178-1180.
- TOMS, G. C., and A. WESTERN. 1971. Phytohaemagglutinins. Pp. 367-462 in Chemotaxonomyu of the Leguminosae, [J. B. Harborne, D. Boulter and B. L. Turner, eds.). Academic Press, London.
- TURNER, N. J. 1977. Economic importance of black tree liehen (*Bryoria fremontii*) to the Indians of Western North America. Econ. Botany. 31:461-470.
- TURNER, N. J. 1984. Counter-irritant and other medicinal uses of plants in Ranun-

culaceae by native peoples in British Columbia and neighbouring area. J. Ethnopharmacol. 11:181-201.

- TURNER, N. C., and M. A. M. BELL 1973. The ethnobotany of the Southern Kwakiutl Indians of British Columbia. Econ. Bot. 27:257-310.
- WARNER, W. L. 1958. A black civilization: a social study of an Australian tribe. Harper and Brothers Publishers.
- WATT, J. M., and M. G. BREYER-BRAND-WIJK. 1962. The medicinal and poisonous plants of Southern and Eastern Africa. 2nd ed. E. & S. Livingstone Ltd., Edinburgh.
- WAUGH, F. W. 1916. Iroquois foods and food preparation. Geol. Sur. Cau. Mem. 86 (Facsimile edition 1973).
- WEI, C. H., F. C. HARTMAN, P. PFUDERER, W.-K. YANG. 1974. Purification and characterization of two major toxic proteins from seeds of *Abrus precatorius*. J. Biol. Chem. 249:3061-3067.
- WEISS, E. A. 1979. Some indigenous plants used domestically by east African coastal fisherman. Econ. Botany. 33:35-51.
- WERGE, R. W. 1979. Potato processing in the Central Highlands of Peru. Ecol. Food Nutr. 7:229-234.
- WHITING, A. F. 1939. Ethnobotany of the Hopi. Museum Northern Arizona, Bull. 15:1-120.
- WILDMAN, W. C. 1968. The Amaryllidaceae alkaloids. The Alkaloids 11:307-405.
- WILLAMAN, J. J., and H.-L. LI. 1970. Alkaloidbearing plants and their contained alkaloids. Lloydia. 33, Supplement No. 3A.
- WINDHOLZ, M. (ed.) 1976. The Merck Index. Merck and Co., Inc. Rabway, N.J.
- WRIGHT-ST. CLAIR, R. E. 1972. Diet of the Maoris of New Zealand. Ecol. Food Nutr. 1:213-223.
- YASURAOKA, K., Y. INE, K. TAKAMURA, H. SHIMOMURA, J. HASHIGUCHI, M. J. SANTOS, and A. T. SANTOS. 1977. Laboratory and field assessment of the molluscieidal activity of gogo (*Entada phaseoloides*) against the amphibious snail intermediate host of *Schistosoma japonicum*. Jpn. J. Exp. Med. 47:483-487.
- YOST, G. S., F. R. STERMITZ, and M. C. WILLIAMS. 1977. Toxic furocournarins of

Summer 1988

LITERATURE CITED (continued)

Cympoptenus longipes. Phytochem. 16: 1097-1098.

ZIGMOND, M. L. 1981. Kawaiisu Ethnobotany. Univ. Utah Press, Salt Lake City.

APPENDIX 1

Classification of Traditional Plant Processing Techniques

- 2. No special detoxification techniques applied (subdivide as in Coursey, 1973)
- 2. Special detoxification techniques applied
 - 2.1 Detoxification by heat
 - 2.11 Unspecified cooking

2.111 Cooking of whole pieces

- 2.1111 Cooking without the addition of salt, lye, or acid
- 2.1112 Cooking with the addition of salt
- 2.1113 Cooking with the addition of lye
- 2.1114 Cooking with the addition of acid
- 2.1115 Cooking after drying
- 2.1116 Cooking after soaking
- 2.112 Cooking after comminution (Subdivide as for 2.111)
- 2.113 Cooking after peeling (Subdivide as for 2.111)
- 2.12 Boiling, stewing, etc. (Subdivide as for 2.11)
- 2.13 Roasting, baking (Subdivide as for 2.11)
- 2.14 Frying (Subdivide as for 2.11)
- 2.15 Steaming (Subdivide as for 2.11)
- 2.2 Detoxification by solution
 - 2.21 Soaking in static water

2.211 Soaking or leaching of whole pieces

2.2111 Followed by unspecified cooking

- 2.2112 Followed by boiling
 - 2.21121 Simple boiling (Subdivide as in 2.111)
 - 2.21122 Repeated boiling in changes of water (Subdivide as for 2.21121)
- 2.2113 Followed by roasting or baking
- 2.2114 Followed by frying
- 2.2115 Followed by steaming
- 2.2116 Followed by drying
- 2.2117 Followed by fermentation
- 2.2118 Followed by pickling
- 2.212 Soaking or leaching after comminution (Subdivide as for 2.211)
- 2.213 Soaking or leaching after cooking and comminution (Subdivide as for 2.211)
- 2.214 Soaking or leaching after cooking (Subdivide as for 2.211)
- 2.215 Soaking or leaching after boiling with lye (Subdivide as for 2.211)
- 2.216 Soaking or leaching after freezing (Subdivide as for 2.211)
- 2.217 Soaking or leaching after drying (Subdivide as for 2.211)

JOHNS & KUBO

2.218 Soaking or leaching after peeling or cutting (Subdivide as for 2,211)

2.22 Soaking with change(s) in water (Subdivide as for 2.21)

2.23 Soaking in running water (Subdivide as for 2.21)

2.24 Leaching (Subdivide as for 2.21)

2.25 Soaking in salt water (Subdivide as for 2.21)

2.26 Soaking with the addition of ashes or lye (Subdivide as for 2.21)

2.27 Soaking with the addition of acidic substances (Subdivide as for 2.21)

2.28 Boiling

2.281 Boiling of whole pieces

2.2811 Simple boiling

2.28111 Without salt, lye, or acid

2.28112 With salt

2.28113 With lye

2.28114 With acid

2.28115 After drying

2.2812 Repeated boiling in changes of water (Subdivide as for 2.2811)

2.282 Boiling after comminution (Subdivide as for 2.281)

2.283 Boiling after peeling (Subdivide as for 2.281)

2.3 Detoxification by fermentation

2.31 Spontaneous fermentation

2.311 Fermentation of whole pieces

2.3111 Without previous treatment

2.31111 Followed only by washing

2.31112 Followed by washing and heat treatment

2.31113 Followed by heat treatment

2.31114 Followed by comminution

2.31115 Followed by drying

2.3112 After cooking (Subdivide as for 2.3111)

2.3113 After boiling with lye (Subdivide as for 2.3111)

2.3114 After soaking (Subdivide as for 2.3111)

2.3115 With addition of salt (Subdivide as for 2.3111)

2.312 Fermentation after communition (Subdivide as for 2.311)

2.32 Fermentation with use of inoculum from earlier preparations (Subdivide as 2.31)

2.4 Detoxification by adsorption

2.41 Addition of clay

2.411 Addition to whole pieces

2.4111 Addition during soaking

2.41111 Addition without previous treatment

2.41112 Addition after cooking

2.4112 Addition during boiling (Subdivide as for 2.4111)

2.4113 Addition during cooking (Subdivide as for 2.4111)

2.4114 Addition during comminution (Subdivide as for 2.4111)

2.4115 Addition to consumed product (Subdivide as for 2.4111)

2.412 Addition after comminution (Subdivide as for 2.411)

2.42 Addition of charcoal (Subdivide as for 2.41)

2.43 Soaking in wet mud

2.431 Soaking of whole pieces

2.432 Soaking after comminution

2.5 Detoxification by drying

2.51 Sundrying

2.511 Drying of whole pieces

2.5111 Sundrying followed by cooking

2.5112 Sundrying followed by soaking

- 2.5113 Sundrying followed by fermentation
- 2.5114 Sundrying followed by comminution
- 2.512 Drying after comminution (Subdivide as for 2.511)

2.52 Kiln or hot-air drying (Subdivíde as for 2.51)

2.6 Detoxification by physical processing

2.61 Peeling

- 2.62 Grating or rasping
- 2.63 Squeezing
- 2.64 Pounding
- 2.65 Grinding
- 2.66 Cutting
- 2.7 Detoxification by pH change

2.71 Lye or lime added

2.72 Acidic substance added